CBCS SCHEME USN 15EC63 # Sixth Semester B.E. Degree Examination, June/July 2019 **VLSI Design** Time: 3 hrs. Max. Marks: 80 Note: Answer any FIVE full questions, choosing ONE full question from each module. #### Module-1 - 1 a. Derive the CMOS inverter DC characteristics graphically from p device and n device characteristics and show all operating regions. (08 Marks) - b. Explain the working of nMOS enhancement mode transistor with suitable diagrams. (08 Marks) OR - 2 a. Derive expression for drain current in linear and saturation region for nMOS transistor. (08 Marks) - b. With neat sketches explain the CMOs P-well process steps to fabricate a CMOS inverter. (08 Marks) #### Module-2 3 a. Write the lambda based design rules for separation of layers and transistors. (06 Marks) b. Draw circuit, stick and layout diagram for nMOS shift register cell. (10 Marks) OR - Define sheet resistance (R_S) standard unit of capacitance (□Cg) and delay unit (τ) (06 Marks) - b. Calculate the capacitance of the structure given below in Fig.Q4(b). (10 Marks) Fig.Q4(b) Area capacitance value for metal 1 to substrate $= 0.3 \text{pF} \times 10^{-4}/\mu\text{m}^2(0.075 \text{ relative value})$ Area capacitance value for diffusion to substrate $= 1 \text{pf} \times 10^{-4}/\mu\text{m}^2(0.25 \text{ relative value})$ Area capacitance value for polysilicon to substrate $= 0.4 \text{ pF} \times 10^{-4}/\mu\text{m}^2(0.1 \text{ relative value})$. ### Module-3 owing device - 5 a. Obtain the scaling factor for the following device parameters: - i) gate capacitance - ii) gate area - iii) saturation current (Idss) - iv) channel resistance (Ron) - v) maximum operating frequency (f₀) - vi) power dissipation per gate (Pg) - vii) current density (J) - viii) gate delay (T_d). (08 Marks) b. With a neat diagram explain 4×4 Barrel shifter. (08 Marks) OR 6 a. Explain the general arrangement of a 4 bit data path for processor. (08 marks) b. Describe Manchester carry chain element. (08 Marks) #### Module-4 - 7 a. Discuss the architectural issues to be followed in the design of VLSI sub system. (05 Marks) - b. Explain in detail the general structure of an FPGA fabric. (06 Marks) - c. Explain switch logic implementation of CMOS 5 way selector with neat circuit diagram. - (05 Marks) OR 8 a. Explain the structured design approach for the implementation of a parity generator. (08 marks) b. Explain dynamic CMOS logic with example. (08 Marks) #### Module-5 9 a. Explain 3 transistor dynamic RAM cell with schematic diagram. (06 Marks) b. Explain any two fault models in combinational circuits. (06 Marks) e. Write a note on automatic test pattern generation. (04 Marks) OR - 10 a. write short notes on: - i) observability and controllability ii) Built In Self Test (BIST). (08 Marks) b. Explain nMOS pseudo static RAM cell with schematic diagram. (08 Marks) * * * * *